Optimal Planning for Autonomous Agents
under Time and Resource Uncertainty

Aurélie Beynier, Laurent Jeanpierre, Abdel-Illah Mouaddib
Bd Marechal Juin, Campus II
BP5186
14032 Caen Cedex, France
{abeynier, laurent, mouaddib} @info.unicaen.fr

Keywords:

Abstract:

In this paper we develop an approach for optimal planning under time and resource uncertainty with complex

task dependencies. We follow the line of research described by (Bresina et al., 2002), overcoming limitations
of existing approaches: they only handle simple time constraints and they assume a simple model of uncer-
tainty concerning action durations and resource consumptions. In many domains such as space applications
(rovers, satellites), these assumptions are not valid. We present an approach that considers temporal and re-
source constraints and deals with uncertainty about the durations and resource consumptions. From an acyclic
mission graph, we automatically build a Markov Decision Process that can be optimally solved by dynamic
programming. Experimental results prove that this approach allows for considering large mission graphs.

1 Introduction

In this paper we develop an approach of planning
under time and resource uncertainty along the re-
search lines described in a challenge paper of (Bresina
et al., 2002). In that paper, authors claim that existing
methods fail because they suffer from many limita-
tions where some of them consist of: (1) they only
handle simple time constraints, (2) they assume a sim-
ple model of uncertainty concerning action durations
and resource consumption. In many domains such as
space applications (rovers, satellites), these assump-
tions are not valid. We present an approach that re-
laxes those assumptions by using a model of tasks
with complex dependencies, uncertain execution time
and probabilistic resource consumption. In this ap-
proach, we consider the following: (1) a mission is an
acyclic graph of tasks that expresses complex depen-
dencies between tasks, (2) a task has a temporal inter-
val during which it can be executed, (3) durations and
resource consumptions of tasks are uncertain. This
class of problems is found in some rover scenarios
where the objective of the rover is to maximize the
overall value of the mission: given the mission graph,
we want the mission to be executed optimally by an
autonomous agent.

The major objectives of future space missions (Es-
tlin et al., 1999; Bresina et al., 2002) will consist of
maximizing science return and enabling certain types

of science activities by using a robust approach. To
show the significance of problems we deal with, let
us give some examples of robotic vehicles where we
express the different constraints we consider in this
paper:

o Time windows: a number of tasks need to be
done at particular but approximate times: for exam-
ple “about noon”, “at sunrise”. There is no explicit
time window but we can represent these using time
windows or soft constraints on a precise time. Exam-
ples include atmospheric measurements (look at the
sun through the atmosphere, must be done at sunrise,
sunset, and noon). Since the rover will be power-
constrained, most of the rover’s operations will oc-
cur between 10:00 and 15:00 to make sure that there
is enough sunlight to operate. Driving will certainly
happen during that part of the day. Communication
also has to start at a particular time since this requires
synchronization with Earth. There are operations that
cannot be done outside of a time window — night-
time operation of cameras or daytime operation of
the night-time spectrometer. Other constraints can be
considered such as illumination constraints (which in-
volves time of day and position), setup times (warm-
up or cool-down delays for instruments), time separa-
tion between images to infer 3D shape from shadows.

e Bounded resources: many activities require
power (moving from a location to another one) and

EST=|,LET=12
durations = {1, 2}

Rini =13 consum = [3.4]

o \
LST=1,LET=10 [snap EST=9.LLT=15
durations = { 4,5, 6}) the target durations = {3.4]
consum. = [4.6,7| .- consum, = {1, 2,3}
o . .
oo T S
(lII\[ntw. m“‘ ‘/ Send)
he target / |
\\ TEELL, BST=5.TET=9 \)
- \\\

durations = {2, 3} S
consum = (5. 6]
“~ /777\\\ -
“afAtmospheric. -~
{measuremepit

Figure 1: An acyclic graph of tasks

data storage (storing pictures with different resolu-
tions).

In summary, these scenarios share common charac-
teristics such as:

1. Activities have an associated temporal window.

2. Task durations and resource consumptions are un-
certain.

3. The temporal constraints are, in general, soft.
4. Precedence dependencies between tasks exist.

5. The mission can be represented by an acyclic
graph.

These scenarios are well suited to space-rovers be-
cause of the communication delay which prohibits
any interactive behavior. For example, communi-
cation from earth to mars suffers from several min-
utes delays, and requires synchronization. Therefore
missions generally include a whole workday, that is
around one hundred tasks to accomplish. In con-
sequence, mission plans are generally computed on
earth, transmitted to the distant agent and then ex-
ecuted autonomously. However, even if we focus
mainly on rovers, the algorithms we present in this
paper can be applied to any problem formalized as
a dependency graph. For example, we could apply
them to cooking a dinner; in this case, we would have
a recipe to follow, ingredients to buy and mix in the
proper order, and choices on which meal to prepare
depending on the remaining time before the guests ar-
rival...

Existing works on planning under uncertainty for
rovers encounter difficulties in their application to real
problems because most of them handle only simple
time constraints and instantaneous actions. More so-
phisticated techniques have been developed to deal
with uncertain duration (Tsamardinos et al., 2003; Vi-
dal and Ghallab, 1996; Morris et al., 2001) but they
fail to optimally control the execution.

The requirements for a richer model of time and
actions are more problematic for those planning tech-
niques (Bresina et al., 2002). The techniques based
on MDP and POMDP representations can be used to

represent actions with uncertainty on their outcomes
(Mouaddib and Zilberstein, 1998; Cardon et al.,
2001) but they have difficulties when those actions in-
volve complex temporal dependencies and uncertain
durations. Given the temporal constraints of the rover
problem, which are not purely Markovian, the ap-
proach should handle irregular multi-step transitions.

In this paper, we proposed a formalism that can
deal with temporal and resource constraints to rep-
resent realistic problems. Our approach deals with
uncertainty on task durations and resource con-
sumptions. Like Semi-Markov Decision Processes
(SMDPs) (Sutton et al., 1999), it considers different
possible durations for each task. We propose to for-
malize the problem using a MDP that allows for tem-
poral and resource constraints. This MDP is solved
optimally by dynamic programming. We demonstrate
that problems of a hundred tasks can be considered.

In the next section, we present the important fea-
tures of the approach based on the construction of
an MDP taking temporal constraints and uncertainties
into account. This MDP uses a state representation
that can express the temporal information needed for
the decision-making process.

2 Principles of the approach

Let’s consider a planetary rover that have a mission
to complete. First, it must move to a target. Then,
depending on the time and on available resources, it
can snap the target or complete atmospheric measure-
ments. To end its mission, the rover must send the
data it has collected. As shown in Figure 1, this small
mission can be represented by an acyclic graph. Each
node stands for a task ¢; and edges represent temporal
constraints: the rover must move to the target before
it can snap it. “Rini” is the initial resource rate. We
consider only “or” nodes : the agent must snap the tar-
get or complete atmospheric measurements. In order
to send the data, it must have completed one of these
predecessor tasks. Temporal constraints are indicated
by the Earliest Start Time (EST) and the Latest End
Time (LET) of each task.

In the rest of the paper, we assume that the mission
graph is given. We will use the terms task, activity,
and node interchangeably. A task will be denoted by
t;. Nonetheless, a task ¢; differs from an action a: an
action consists of a task and a start time.

Each task ¢; is characterized by its time window
and by the uncertainty about its duration J;(¢;) and
about its resource consumption ¢, (¢;). When it is un-
ambiguous, we will suppress the activity argument ¢;
for conciseness.

Temporal window of Tasks Each task is assigned
a temporal window [EST, LET] during which it must
be executed. The execution of the activity (both start
and end times) must be included in this interval for
the task to succeed.

Uncertain execution time The uncertainty on du-
rations has been considered in several approaches de-
veloped in (Mouaddib and Zilberstein, 1998; Zilber-
stein and Mouaddib, 1999; Cardon et al., 2001). All
of them ignore the uncertainty on the start time. We
show in this paper how extensions can be considered,
taking different temporal constraints into account.

Definition 1 A probabilistic duration distribution,
P.(At) = Pr(§; = At), is the probability that the
execution lasts At time units.

Uncertain resource consumption The consump-
tion of resources (energy, memory, etc ...) is uncer-
tain. As the agent has limited initial resources, it must
consider resource constraints.

Definition 2 A probabilistic resource consumption
distribution, P.(Ar) = Pr(6, = Ar), is the proba-
bility that the activity consumes Ar units of resources.
The representation adopted for these distributions
is discrete. We use sets of pairs (At, p) and (Ar, p)
where each pair means that there is a probability p
that the execution lasts At time units or consumes Ar
units of resources. We assume that resource consump-
tion and execution time are independent, but this as-
sumption does not affect the genericity of the model
(we can use a probability distribution of (Ar, At)
such that P((Ar, At)) is the probability that the activ-
ity lasts At time units and consumes Ar resources).

Overview In order to formalize our problem as a
MDP, we need further information about the tasks. In
fact, we must know the possible execution intervals of
each task and their probabilities. Once these informa-
tion are known, the MDP can be defined and solved.

Our approach can be divided into several steps.
An algorithm first propagates the temporal constraints
and computes the set of possible time intervals for
each task. It also computes the probabilities of these
intervals. The MDP is then constructed using these
information and solved by the Policy Iteration algo-
rithm (?).

3 Temporal interval and probability
propagation
The decision process bases its decision on the re-

maining resources, on the state of the latest executed
task and on the execution interval of this task.

Many possible execution intervals exist, and many
resource levels can be available for each task, as
shown on Figure 2. In order to explore the whole
state space, we need to know the entire set of pos-
sible execution intervals. Therefore, we developed an
algorithm that computes all the possible time inter-
vals from the mission graph, weighted with a proba-
bility. This probabilistic weight allows us to know the
probability that an activity will be executed during a
given interval of time. We first describe an algorithm
to compute the possible execution intervals of each
task. We then explain how to compute their probabil-
ities.

The set of possible start times is a subset of
{EST,EST +1,...,LET — miné;} (EST: Ear-
liest Start Time, LET': Latest End Time). We denote
the Latest Start Time as LST = LET —min §; where
min ¢; is the minimum duration of the task.

We can compute off-line all the possible end times
of an activity’s predecessors and consequently com-
pute the possible start times of the activity. The algo-
rithm is similar to the one described in (Bresina and
Washington, 2000). The possible execution intervals
I are determined by a simple forward propagation of
temporal constraints in the graph. This propagation
organizes the graph into levels such that: [is the root
of the graph, [; contains all nodes that are constrained
only by the root node, . . ., [; contains all nodes whose
predecessors include nodes at level [;_; and all of
whose predecessors are at level [;_; or before. For
each node in a given level [;, we compute all its pos-
sible execution intervals from its predecessors.

e Jevel ly: the start time and the end times of the root
node (the first task of the mission) are computed as
follows:

- start time: st(root) = EST (root)

- end times: ET(root) =
d0;(root),¥é;(root) }

Possible execution intervals of the root are given
by I = [st(root),et(root)] with et(root) €
ET(root). Note that there is potentially a non-zero

probability that some end times violate the deadline
LET.

e Jevel I;: for each node in level /;, the possible start
times are the times at which the predecessor ac-
tivities can finish. We first compute all the pos-
sible start times, and then we eliminate the start
times that do not respect the constraints of earli-
est start time: st < EST, and the latest start time:
st > LST.

For each possible start time, we compute the pos-
sible end times, accounting for the possible dura-

tions of the node. Note that potentially st(node) +
0;(node) > LET (node)

Figure 2 gives an example of temporal interval

{st(root) +

d={3.4} EST=1,LET=12

[5 , 8]

snap [5 ., 9]

| the target | [6 , 9]
i &) L6 1 10
[7 , 10]

7, 11]
[Move to

Start_time = 1

L, s] d={3.4)
1, 6]
[r, 71 & atmospher’ lf:T:Z;LILT=12
measurements 6 : 10]
[7 , 10]
[7 , 111

Figure 2: Temporal interval propagation example

propagation. Many classical algorithms exist in liter-
ature, like PERT, but most of them don’t deal with un-
certainties on execution time and resource constraints.

As explained in the next section, we must com-
pute the possible execution intervals to define the state
space. Probabilities on these intervals must also be
known to compute the transition probabilities.

The probability of an execution interval P,, de-
pends on its start time and on the probability of its
duration P..

A task cannot start before its predecessors finish.
Therefore, the probability on the start time depends
on the predecessors’ end time. We will consider a
task ¢;. P, (I|et(I")) denotes the probability that ¢;
is executed in the interval I when its predecessor fin-
ishes at et(I'). This value measures the probability
that an activity starts at st(I) and ends at et(I).

In order to respect temporal constraints, an agent
executes the next task as soon as possible: if it de-
lays the execution of the next task, it will increase the
probability of violating the deadline with no expected
gain. If st(I) > et(I') and there is no possible start
time for ¢; in Jet(I'), st(I)], the agent will start the
execution at st(I).

The probability P, (I|et(I")) of an execution inter-
val I is defined as follows:

o If st(I) is the first possible start time such that
st(I) > et(I'): Py(Ilet(I")) = P.(et(I) — st(I))

e Otherwise: P, (Ilet(I')) =0

These probabilities are computed off-line during
the forward propagation of temporal constraints. By
propagating temporal constraints and their probabili-
ties through the mission graph, the algorithm allows
for developping the entire state space.

4 A decision model: MDP

As mentioned above, we model this problem with
a Markov Decision Process.

{ Moveto

Atmospheric
/ " ~_ measurement
- . :

/S \ P

{ Anap /ﬂmusphmc\

theasuremeny
S

| the target |

-
sent
| data)

"

Figure 3: Relationship between the original graph structure
and the MDP state space

Definition 3 A Markov Decision Process (MDP) is
defined by a tuple < S, A, P, R >:

e S is a finite set of states s

e A s a finite set of stochastic actions a

e P=8xAXxS is a Markovian transition func-
tion that gives the probability the agent moves to
a state s when it executes action a from s'.

‘R is a reward function

To solve our problem, we need to define the state
space, the action set, the transition function and the
reward function of our model. These components can
be deduced from the initial mission graph.

Figure 3 gives a representation of the relationship
between the original graph structure, the state space
and the transitions of the MDP. The left part of the
figure stands for the mission graph. The right part
represents the state space of the MDP and its transi-
tions. Each box groups the states associated with a
task ¢;. Each node stands for a state. An edge repre-
sents a transition: it links a state associated to a task
t; with a failure state or with a state associated to a
task t;41, where t;41 is a successor of ¢; in the mis-
sion graph. The transitions between two states depend
on the executed task ¢;, its start time, duration and re-
source consumption. Some nodes have no successor:
they are terminal states.

State Space At each decision step, the agent must
decide for the execution of a task ¢;41. The success
of this execution depends on the temporal constraints
and the available resources. If temporal constraints
are not respected or if the agent lacks resources, the
execution of the task fails and the agent moves to a
failure state. Otherwise, the execution succeeds and
the agent moves to a success state. The decision relies
on three parameters: the latest executed task ¢;, the

available resources r, and the interval of time I dur-
ing which task ¢; has been executed. A state is there-
fore defined by a triplet [¢;,, I]. States are fully ob-
servable since the temporal intervals are determined
off-line and the resource consumption is observed by
the agent as an environment feedback.

For each task, we develop a set of states by com-
bining the execution intervals and the remaining re-
sources. Possible resource rates are computed by
propagating resource consumptions through the mis-
sion graph. The consequence of representing all the
intervals and resource levels is that the state space be-
comes fully observable. The decision process can per-
form its action selection using the Bellman equation
defined below.

Action Space From each non terminal state, the
agent should make a decision on which task to exe-
cute and when to start its execution. Note that the de-
cision depends only on the current state and thus this
process has the Markov property. The set of actions
a = E;(st) to perform consists of Executing task t; at
time st, where ¢; is a successor of the latest executed
task. This action a is probabilistic since the duration
and resource consumption of the task are uncertain.
Standard MDPs used to represent one time unit ac-
tions. Our approach extends this model and allows
for representing various possible durations for each
action.

Transition model When the agent starts executing
an action from a state [t;,r, I], it can move to vari-
ous states. If temporal and resource constraints are
respected, the execution succeeds. If the agent lacks
resources, starts too late or violates the deadline, it
moves to a failure state. Failure states are considered
as terminal states. It is straightforward to adapt our
system to non terminal failure states. States associ-
ated with the last task of the mission are also terminal
states.
Four kinds of transitions have to be considered:

e Successful Transition: The action allows the agent
to move to [t;41,7’, '] where task ;41 has been
achieved during the interval I’, respecting the EST
and LET of this task, and r’ are the remaining re-
sources. The probability Psirc of moving to the
state [tj41,7',I'] is :

Pspc =Y

A, <ret(I')<LET

e Too late start time (TLST) Transition: The agent
starts too late (after LST). In such a case, the
agent moves to a [failure, r, [st, +00]] (in fact, the
resource and interval arguments are unimportant

> Po(A).Py(I'st(I') = et(I))

since the state is terminal). The transition proba-
bility Prpsr is defined as: Prpst = Pr(st >
LST).

e Deadline met Transition: The agent starts to ex-
ecute the task at time st but the duration §; is so
long that the deadline is met. This transition moves
to the state [failure,r, [st, +00]]. The probability
Pp e of moving to this state is: Ppyr =

PT(St < LST) : Z Z Pr(Ar) 'Pc(tc)

Ar<r LET—t.<st<LST

o [nsufficient resource Transition: The execution re-
quires more resources than available. The agent
moves to a state [failure, 0, [st, +00]]. The prob-
ability Prrr of moving to this state is: Prpr =

2oa,sr Pr(Ar)

Reward function Each time the agent finishes to
execute a task within temporal, precedence and re-
source constraints, it obtains a reward which depends
on the executed task. R; is the reward the agent ob-
tains when it has accomplished the task ¢;

As the number of tasks and start times are finite,
the horizon of the MDP is finite. Moreover, there is
no loop in the mission graph: we cannot have “A must
be executed before B, B must be executed before C
and C must be executed before A”. Then, the MDP
have no loop.

MDP resolution Once the MDP is defined, it can
be solved optimally. To compute an optimal policy
for the agent, we use dynamic programing and Bell-
man principle of optimality. A policy is a mapping
from states to actions: for each state it dictates which
action to execute. It allows the agent to execute its
tasks autonomously. The value of each state relies on
the immediate gain (reward) and the expected value
that takes into account the various possible transi-
tions. Each state is valued as follows:

V([ti,r,I]) = R; + max (V’)

Ei (st>et(l)),k=successor(t;)
where V' is the expected value of future tasks. We

decompose V' as the:

V' =Vsuye + Vrarr

such that:
e Expected Value of successful transition.

Vsue = Psuc - V([tiv1, 7 — A, I')

This value is used when the task starts and finishes
with success: there is enough resources and I’ is the
execution interval of the next activity where its start
time st(I') > et(I) of the last executed task.

e Expected Value of failure transition: Otherwise,
the execution fails because the agent lacks resources
or temporal constraints are violated.

Vearr, = Prarr - V([failure, r, [st, +0]])

where Prarr, = Prist + Poyur + Prrr = 1 —

Psyc

The policy 7 of a state [t;, 7, I] is given by:
w([t;,r, I]) = R; + arg V!

max
Ei (st=et(l)),k=successor(a;)

Optimality The MDP is easily solved using the
standard dynamic programming algorithm policy it-
eration. Therefore, the obtained policy is optimal.
Precedence constraints allows for ordering the policy
revision: the tasks are considered from the leaves to
the node. There is no need to iterate the algorithm
since there is no loop.

5 Experimental Results

The proposed model overcomes the difficulties we
described in the introduction by proposing a rich
model that can deal with complex temporal con-
straints, limited resources, and uncertainty. However,
we need to determine the scale of the problems we can
solve. The objective as described in (Bresina et al.,
2002) for this experiment is to overcome the problem
with a hundred tasks. In the following, we demon-
strate that our approach is powerful enough to deal
with the hundred tasks required by robotic applica-
tions (we can deal with more).

One iteration of policy iteration is polynomial in
the number of states and actions. The number of ac-
tions depends on the number of tasks and on the num-
ber of possible start times for each task. In the worst
case, we have:

#nactions = #ntasks -#nstart_time

(Boutilier et al., 1999) asserts that MDPs composed
of one million states can be easily solved. We have
therefore studied the state space size of the MDPs we
generate. A benchmark composed of several missions
of various sizes has been used. For instance, the mis-
sion composed of four tasks is presented by Figure 1.

We have computed the state space size of each mis-
sion. It relies on:

e the number of tasks

e the number of intervals for each task

e the number of resources available after the exe-
cution of each task

These parameters affect the complexity of the prob-
lem. In the worst case, the state space size is given by
the following equation:

#nstates = #ntasks -#nMcw _Interv -#nMaz _Res

where #n¢qsk5 18 the number of tasks of the mission,
H#NMaz_Intery 18 the maximum number of intervals
per task, #narqaz_Res 18 the maximum number of re-
source levels per task.

Number of tasks : As it can be seen in the above
equation, if the number of tasks increases, the state
space size grows. Figure 5 illustrates this evolution.

Number of intervals for each task : In the worst
case, the number of intervals for a task is given by:

#nlnterv = (LET — min 61 - EST)'#ndurations

where #ngurations 18 the number of possible execu-
tion durations for the task.

If the temporal constraints are tighter, the temporal
window [EST, LET] is reduced. Then we compute
fewer intervals and the number of states decreases.
When we increase the size of the temporal windows,
the state space grows: looser temporal constraints al-
lows for more possible plans, involving new states.
Figure 4 gives an example of this evolution, consid-
ering a graph of one hundred tasks. 100% is the ini-
tial size of the temporal windows; 200% stands for
temporal windows twice larger than the initial ones.
On Figure 4, the state space size rises and then levels
off at 150%. Indeed, as temporal windows become
larger and larger, temporal constraints relax more and
more. At 150%, temporal windows don’t constraint
any more the execution of the mission. All the pos-
sible plans (and possible states) are considered; the
maximum number of states is reached. Keeping on re-
laxing the constraints doesn’t increase the state space
size anymore. The tighter the constraints are, the less
execution intervals are possible and the smaller the
state space is.

State space size
350000

300000 [
250000 //

200000 + /

Nb. states

150000 - /

100000 /

50000

, . .
100 150 200 250 300
Temporal Constraints’ size (%)

Figure 4: State space size while relaxing the temporal con-
straints

Number of resource levels: In the worst case, the
number of resource levels for a task ¢; is given by:

#nRes (tz) = Z #nRes (tk))-#nconsum

trEpred(ts)

State space size

70000

60000 - 1
50000 - / 1
40000 / El

30000 - ra l

20000 |-

10000 -

ol v

10 20 30 40 50 60 70 80 90 100
Nb. Tasks

Nb. states

Figure 5: State space size for different mission sizes

State space size
160000

T
140000 -
120000 -

100000

80000

Nb. states

60000

40000

20000

0

L L L L L
100 200 300 400 500 600
Initial Resource Level

Figure 6: State space size for different initial resource level

where #nconsum 18 the number of possible resource
consumptions for a task.

If the initial resource level is large, a lot of resource
levels are available for each task since we only con-
sider positive resource levels. If the initial resources
increases, the number of negative resource levels de-
creases and more levels must be accounted for. Fig-
ure 6 shows the evolution of the state space size for
a one hundred task mission when the initial resources
increases. When the initial resources are greater than
350 units, we can see that the state space size lev-
els off. In this situation, the agent has a large initial
resource level and never lacks resources: each level
reached is positive; increasing the initial level does
not increase the number of levels anymore. If the ini-
tial resources get scarce, many possible resource lev-
els are pruned: the state space size diminishes.

Branching factor As we increase the number of
predecessors for task t;, the number of possible re-
source levels available before ¢;’s execution increases,
as well as the number of possible start times. There-
fore, the number of branches (alternative paths) in the
mission graph influences the state space size. More
experiments about branching are under development.

6 Related Work

There has been considerable work in planning un-
der uncertainty that leads to two categories of plan-

ners: conformant planners and contingent planners.
These planners are characterized by 2 important cri-
teria: representation of uncertainty and observability.
The first criterion, the uncertainty representation, has
been addressed in two ways in many planners using
disjunction or probability while the second criterion is
composed of Non-observability (NO), partial observ-
ability (PO) or a full observability (FO) of planners.
A survey on all classes of planners can be found in
Blythe (Blythe, 1999) and Boutilier (Boutilier et al.,
1999) where details are given on NO, PO, or FO
disjunctive planners and on NO, PO or FO proba-
bilistic planners. Let us just recall some of those
planners: C-PLAN NO-disjunctive planner, Puccini
PO-disjunctive planner, Warplan FO-disjunctive plan-
ner, Buridan NO probabilistic planner, POMDP, C-
MAXPLAN PO probabilistic planners and JIC, MDP
FO probabilistic planners. In this section we focus
on why those planners are unsuitable for our concern
and why our work is a contribution to overcome those
limits.

These planners encounter some difficulties in our
domain of interest:

e Model of time: the existing planners do not sup-
port explicit time constraints nor complex temporal
dependencies.

e Model of actions: the existing planners assume
that actions are instantaneous.

e Scalability: the existing planners don’t scale to
large problems. For rover operations, a daily plan can
involve on the order of a hundred operations, many of
which having uncertain outcomes.

The approach we present in this paper meets the re-
quirements for a rich model of time and actions and
for scalability. It complements the work initiated in
(Bresina and Washington, 2000) by using a similar
model of time and utility distribution and by using
a decision-theoretic approach. The advantage of us-
ing such an approach is to achieve optimality. An-
other contribution consists of handling uncertainty on
resource consumption combined with uncertainty on
execution time.

In the MDP we present, actions are not instanta-
neous as in the previous planners and can deal with
complex time constraints such as a temporal window
of execution and temporal precedence constraints. We
also show that our approach can solve large problems
with a hundred operations, many of which are uncer-
tain. Another requirement needed by the rover ap-
plications consists of continuous time and resources.
We experimentally show that when we use different
approaches for resource units, our approach has a mi-
nor errors at run-time while scalability is better. The
tradeoff between the scalability and the time granu-
larity shows that we can discretize the time and the
outcomes of actions regarding a small error in exe-
cution. Another requirement mentioned for the rover

applications is concurrent actions. This problem is
under development, taking advantage of some multi-
agent concepts : as soon as the rover needs to execute
two actions, we consider those actions are concurrent
agents. This new line of research allows for bridg-
ing the gap between the multiagent systems and the
distributed MDP.

7 Conclusion and future work

In this paper we presented an MDP planning tech-
nique that allows for a plan where operations have
complex dependencies and complex time and re-
source constraints. The operations are organized in
an acyclic graph where each operation has a tempo-
ral window during which it can be executed and an
uncertain resource consumption and execution time.
This approach is based on an MDP using a rich model
of time and resources and complex dependencies be-
tween tasks. This technique allows us to deal with
the variable duration of actions. We presented exper-
imental results showing that our approach can scale
to large robotic problems (a hundred of operations).
Our approach also overcomes some of the limitations
described in (Bresina et al., 2002). Indeed, our model
is able to handle more complex time constraints and
uncertainty on durations and resource consumptions.
Moreover, as required in (Bresina et al., 2002), our
system can consider plans of more than a hundred
tasks.

In this paper, we have focused on planteray rover
apllications Nonethless, our approach is not restricted
to space applications. It can be applied to any sce-
nario formalized by an acyclic graph with temporal
constraints.

However, this approach needs to be extended to
other requirements such as continuous variables. In
our current version of the approach we use a discrete
representation of time and resources. We show ex-
perimentally that with such a representation the ex-
ecution errors are small and this representation can
be tolerated. We continue experiments in this line
of work to reduce the errors. We are specially inter-
ested in finding tradeoffs between the scalability, ex-
ecution errors and discretization. The other extension
we are developing consists of the use of multiagent
systems with complex temporal dependencies using a
distributed MDP.

Future work may concern the construction of the
graphs that we consider as given in this paper.

REFERENCES

Blythe, J. (1999). Planning under uncertainty in Dy-
namic domains. PhD, Carnegie Mellon Univer-
sity.

Boutilier, C., Dean, T., and Hanks, S. (1999).
Decision-theoretic planning: Structural asump-
tions and computational leverage. Journal of Ar-
tificial Intelligence Research, 1:1-93.

Boyan, J. and Littman, M. (2000). Exact solutions to
time-dependent mdps. In NIPS.

Bresina, J., Dearden, R., Meuleau, N., Ramakrishnan,
S., Smith, D., and Washington, R. (2002). Plan-
ning under continuous time and resource uncer-
tainty : A challenge for ai. In UAL

Bresina, J. and Washington, R. (2000). Expected
utility distributions for flexible contingent exe-
cution. In AAAI Workshop on Representation is-
sues for Real World Planning system.

Cardon, S., Mouaddib, A., Zilberstein, S., and Wash-
ington, R. (2001). Adaptive control of acyclic
progressive processing task structures. In IJCAI,
pages 701-706.

Estlin, T., Tobias, A., Rabideau, G., Castana, R.,
Chien, S., and Mjolsness, E. (1999). An in-
tegrated system for multi-rover scientific explo-
ration. In AAAI, pages 613-613.

Morris, P., Muscettola, N., and Vidal, T. (2001).
Dynamic control of plans with temporal uncer-
tainty. In 17¢" IJCAI-01.

Mouaddib, A.-I. and Zilberstein, S. (1998). Optimal
scheduling for dynamic progressive processing.
In ECAI-98, pages 499-503.

Sutton, R., Precup, D., and Singh, S. (1999). Between
mdps and semi-mdps : A framework of temporal
abstraction in reinforcement learning. In Report.

Tsamardinos, 1., Pollack, M., and Ramakrishnan, S.
(2003). Assessing the probability of legal ex-
ecution of plans with temporal uncertainty. In
ICAPS Workshop on Planning under uncertainty
and Incomplete information.

Vidal, T. and Ghallab, M. (1996). Dealing with uncer-
tain durations in temporal constraints networks
dedicated to planning. In 12! ECAL.

Zilberstein, S. and Mouaddib, A.-1. (1999). Reactive
control for dynamic progressive processing. In
1JCAI-99, pages 1269-1273.

