
 
 

  
Abstract—This paper shows how the experiment of the Diatelic 

Project, a Continuous Ambulatory Peritoneal Dialysis monitoring 
system, has taught us rules concerning the creation of intelligent 
agents based on a similar architecture. In particular, we explain 
how a fuzzy discretization of continuous sensors allows for a great 
model simplification while keeping some good precision in the 
diagnosis. The adaptation of this architecture to an anaesthesia-
monitoring problem is developed, highlighting the qualities and 
the drawbacks of this kind of models. 
 

Index Terms—Hidden Markov Models, Gradient Descent 
Optimization, Medicine, Model-Based Diagnosis 

I. INTRODUCTION 

HE Diatelic project is born from the cooperation between 
the ALTIR (Association Lorraine pour le Traitement de 

l’Insuffisance Rénale) and the LORIA (Laboratoire Lorrain de 
Recherche en Informatique et ses Applications). It is aimed at 
improving the life quality of renal insufficient patients. More 
precisely, we focus on the patients who chose continuous 
ambulatory peritoneal dialysis (CAPD). A good introduction 
to the different dialysis problems can be seen on [5]. 

These patient are treated at home, thanks to a surgical 
modification of their peritoneum. This natural bag rests in the 
abdomen, and it is very well irrigated by small blood vessels. 
The modification consists in the addition of a catheter at the 
bottom of the bag. The patient is then able to fill his 
peritoneum with some physiological serum. Next, the catheter 
is closed, and the peritoneum stays filled for several hours. 
Some osmosis between this poach content and its blood 
vessels will drain more or less water, depending on the 
concentration of the injected fluid. From this point, the process 
of draining water from the whole corpse is done as usual: 
Blood drains excess water from the various organs it flows 
through. Next, this water is drained by the peritoneum instead 
of the kidney. 

From a medical point of view, this method is clearly better 
than the standard haemodialysis, since water is drained in a 
more progressive way. Haemodialysis, on the other hand, 
requires the patient to be at hospital a whole day, and 
sometimes more. During this time, as much as 10 litres may be 
drained. Moreover, the patient generally have 2 dialyses a 
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week to ensure a minimal stability. This implies that the 
patients better accept peritoneal dialysis than haemodialysis. 

For the sake of safety, a nurse comes and see each patient 
regularly, and the patient comes back to the hospital once a 
month to see his doctor. Between two consultations, each 
patient has to fill a sheet of paper with his medical parameters 
like his weight, his blood pressures and the kind of 
physiological serum he has injected into his peritoneum. 

The improvement brought by Diatelic on this situation is 
based on the use of computer sheets instead of paper sheets. 
The patient enters his medical parameters directly into the 
computer every day. These data are then sent to a server 
through the patient’s phone line. [6] shows a good overview of 
the network architecture needed by such a platform. There, an 
intelligent system looks for anomalies to report and stores 
them in a database. On the other side, the medical team may 
connect to the same server and look at any data from any 
patient, for any past day. Since this represents a very large 
amount of data, the latest alerts generated by the system are 
displayed on the first page, efficiently driving the doctor’s 
focus onto the patients whose health seems to worsen. 

In the end of this paper, we will focus more precisely on this 
particular system, explaining the reasons for its design. Next, 
we will show this knowledge can be reused for a different 
problem. Finally, a short discussion on the possible 
improvement of this architecture. 

II. THE DIATELIC SYSTEM 

A. Human cooperation constraints 
In a medical treatment context, the problem of responsibility 

appears quickly. Let’s imagine a patient, one day, enters false 
data due to a measuring device fault. This can generate some 
conditions that lead the system into mis-evaluating the patient 
hydration level. To compensate, the system would suggest to 
increase the serum concentration to drain this excess water 
until the weight falls back to its normal value. Since the patient 
was not really hyperhydrated, he will lose quickly large 
amounts of water, and he will probably die. In such a case, 
who is responsible for the patient death? Is this the instrument 
maker, the doctor, the patient, or the system inventor? To 
avoid such a case, we decided not to interfere directly with the 
treatment. The system just helps the doctor in making his own 
diagnosis. This implies that the system recommendations must 
be understood by the doctor. Moreover, it should not address 
the only result, but also the whole deciding process. This 
eliminates lots of the classically used algorithms.  
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B. The first version 
The first version of the system has been created from the 

rules given by the various doctors. Rules were relatively easy 
to understand by doctors since they were based on those used 
by the doctors. The trouble is that the detail of the rules was a 
bit difficult to read. Moreover, the interactions among several 
rules were difficult to predict and necessitated the use of 
artificial priorities to ensure proper functionalities. 

The experiment has shown that this version had some 
limitations: Small variations of the parameters gave rather 
large impact on the diagnosis; The rules were so much linked 
one to another that it was nearly impossible to have a small 
modification without revalidating the whole model from 
scratch. These two points are closely related to the third one: 
the system was not adaptable from one patient to another. This 
implied that the only utilizable model was a generic one. So 
the system is not really bad for any patient, but it does not 
behave very well neither.  

This is why a second version has been realized. 

C. The working version 
The rule-based version has shown that a few rules could 

handle the problem of monitoring a patient hydration level. 
These employed fuzzy logic that gave some flexibility to the 
system, limiting the amount of false detection by smoothing a 
little the diagnosis evolution. 

The new system uses the same ingredients. However, we 
have separated the different steps of the diagnosis for the sake 
of simplicity. To handle the time evolution, we tried some 
Markov models. These are known for a very correct behavior 
when they are applied to an evolving system that shows some 
uncertainty. In our case, this uncertainty may overcome several 
parameters we miss. 

Considering that the state of the patient is unknown, and that 
the medical signals we receive are only clues that should allow 
us to uncover some of this state, we have naturally chosen 
some variant of Hidden Markov Model (HMM). Reference [1] 
gives a very good tutorial on the various Markov models and 
the associated algorithms. 

The main problem consists in dealing with continuous 
signals. Actually, the greatest majority of the medical signals is 
numerical. To keep the model understandable by the doctors, 
we wanted to keep the symbolic part of the rule-based system. 
Moreover, since fuzzy logic has proven its usefulness upon 
smoothing state transitions, we applied these to obtain a fuzzy 
partition of each signal into symbolic data. We chose three 
values to conform with doctor’s way of thinking: A given 
signal may be low, normal, or high. 

There, our assumption is that these sensors are not 
intrinsically linked one to another, but that the hidden state of 
the patient influences several of them simultaneously. This is 
why we can consider that sensors are statistically 
independents. Thus, the aggregation formula necessary to 
compute the probability of the observation O in the state S 
from the probability of each sensor ci giving the symbolic 
value sv reduces to: 

P( )O |S  = ∏
i

  ∑
sv ∈ ci

 P ( )ci =sv |S  . P ( )ci =sv |O   (1) 

This method has been shown in [2] for use in Xavier's control. 
The main advantage of such a simple formula is that it can be 
easily split sensor per sensor, and state per state, knowing the 
relationship between the numerical value val and each symbol 
sv: 

P( )ci |S ( )val  = ∑
sv ∈ ci

 P ( )ci =sv |S  . P ( )ci =sv| ci =val  (2) 

These model parameters can then be displayed with a graph 
showing the probability of the continuous observation in a 
given state. Here is an example of the resulting plot. 
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Probability of observing blood pressure values for a dehydrated patient 

 
Since doctors are very used to using such graphs, they are 

really at ease with this representation. 
The transition matrix dictates how the model behaves when 

there are no available data. Another constraint is that it must 
converge to a state of uncertainty. The system (that is the 
patient and his environment) is so noisy that no clear prevision 
can be made with enough certainty on long periods. This 
implies a very specific structure. Here is the equation ruling 
the evolution of the state probability S, starting from time t, 
when no data are received: 

P( )S( )t+1  =q | S ( )t  = ∑
r∈S

 P( )St+1 =q |St =r  . P( )St =r  (3) 

We impose that the Markov chain converges on a unique 
stationary point. We impose also that this belief-state must be 
uniform, i.e. that each one of its _n_ states has the same 
probability as the others: 
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⇔ ∑
j=1

n
 P( )St+1 = i | St = j  = 1 ∀i (6) 

In definitive, converging on an uniform stationary state 
implies that each line and each column of the transition matrix 
must sum to 1.  



 
 

D. Advantages and criticisms of this model 
One of the interests in this model is that it is easily 

understandable by doctors. We showed that each parameter 
was considered separately from the others, and that allowed us 
to produce a visual representation of this, signal per signal, and 
state per state. 

From a computer scientist point of view, this model has 
relatively few parameters. This allows for some model learning 
in a reasonable time. Additionally, these parameters may be 
clustered in two groups: those which are specific to a patient, 
and those which are specific to the monitoring problem. This 
allows for a specialization of the model from every patient, 
and it increases the global efficiency of the system. Finally, its 
algorithms are well known and easy to implement. 

The trouble is that standard learning algorithms do not work 
anymore with this kind of model. The first point is that 
observations are treated in a specific way … So they should be 
learned in a specific way also. The second problem is that 
doctors must be able to understand the model. This implies 
that the states of the model must have a precise semantic. 
Simply aggregating similar data in similar states is not 
sufficient. Aggregated data must be related to the same 
pathology. 

Another drawback of this model concerns the transition 
matrix: Since each line and each column must sum to 1, it is 
nearly impossible adapting it to a given patient. An alternative 
would be to choose an even more specific matrix, such as a 
symmetric one. This would allow for its learning. 
Nevertheless, it is not realistic to impose that, in a given 
situation, the probability to go from state A to state B is the 
same that going from state B to state A. Considering the fact 
that so many factors may influence the state of a given patient, 
we finally chose our transition matrix to be uniform, except for 
diagonal factors: 
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E. Learning algorithm 
To ensure a proper semantic for every state, we used a semi-

supervised algorithm. It is based on a sample diagnosis given 
by a doctor concerning a given patient. However, to prevent 
over learning of the doctor’s diagnosis, we had to optimize the 
parameters according to a compromise function. This one is 
minimal when the obtained diagnosis is similar to the doctor’s 
one, and that the reliability of the model (the probability that 
the observation sequence could be generated by the model) is 
maximal. 

The core of the algorithm is a derivative free gradient 
descent algorithm with a relaxation inspired from Powell’s 
work. Since most of the parameters are strictly bounded, we 
used a dichotomical search for the minimum for each 
parameter to be optimized. These points have been very well 
explained in [3], along with other alternatives. 

Powell’s relaxation consists in the replacement of one of the 
parameters with a new vector. This one is composed of the 
various updates made during the previous optimization cycle. 
This allows for a good speed boost because parameters with 
very little influence are replaced by a “meta-parameter” 
modelling the best expected descent direction. The trouble 
with this method is that the search space quickly degenerates. 
Some parameters tend to become collinear to other ones, while 
some simply disappear. Brent suggests resetting the parameter 
space after a while in [4], along with other optimizations. We 
chose to simply add this meta-parameter to the search space 
instead of replacing another one. This allows for some 
interesting acceleration, but it limits its influence on the model. 

Additionally, one must pay attention to the domain of this 
meta-parameter. Its optimization must ensure that none of the 
model parameters will leave its validity domain. This task is 
difficult, because some of the parameters are linked together. 
The modification of a parameter can also modify the domain 
of other ones. For example, setting the medium value of a 
signal also modifies the lower bound of the high value and the 
upper bound of the low value of this signal. 

III. APPLICATION TO OTHER PROBLEMS 

A. Useful teachings 
The Diatelic system is being experimented for 3 years. Its 

interactions with patients and doctors have underlined some 
points which we consider worthy for similar systems. 

There is no need of gigantic systems for handling 
monitoring problems: the Diatelic model consists in only 5 
states for modelling hydration troubles and weight anomalies. 

Fuzzy filters are a good way to cope with continuous signals 
that have a known standard behavior. It is a good alternative 
between discrete observations and probability density 
functions. The latter generally are finite sums of normal 
probability functions. These are infinite support functions that 
require few parameters. The trouble is that they always tend to 
zero for both upper and lower limits. On the other hand, 
discrete observations allow for flexible control of the 
probability of each generated symbols. The trouble is that their 
transition is steep. Let’s imagine a weight signal. With 50 kg, 
it is normal. If the weight increases by 2 kg, it is a high weight. 
Now, 51.9 kg is then categorized as normal. The only solution 
is then to discretize more precisely the interval between 
normal and high values. The model then has lots of 
observation symbols. The use of fuzzy filters would give us 
more progressive transitions: 51.9 kg is certainly high (98%), 
but there is a small probability (2%) it would be normal. This 
contributes to a model with few parameters but great 
expressivity. 

Impossible transitions and observations should be avoided: 
Nothing is really impossible in a real problem. The occurrence 
of an event categorized as impossible instantly nullifies the 
whole model efficiency.   
It is a drawback of the belief-state updating formula: 



 
 

P( )St+1=q|St ,Ot =P( )Ot |S=q ∑
r∈S

 P( )St+1 =q |St =r .P( )St =r  (8) 

Let’s imagine a situation where the observation  can only be 
generated into an unreachable state. This implies that all the 
reachable states have a null probability. The other ones are 
unreachable, whichever can be their probability of having this 
observation. In definitive, no state is reliable anymore, and the 
situation cannot be repaired by the following observations. 

B. Transposition to Anaesthesia monitoring 
The objective of this system is to ensure a good anaesthesia 

quality with a minimal drug injection. Actually, injected drugs 
quantity is directly responsible for post-operation problems. 
As with Diatelic, responsibility conditions prevent us from 
directly driving the anaesthesia. Instead, we can suggest the 
anaesthetist some modifications in the drug injection program. 
Before this, it is necessary to obtain a reliable diagnosis upon 
the sleeping state of the patient: is he sleeping? Does he risk 
coma? Will he wake up if the surgeon operates? 

The signals available to the system are similar to those of 
Diatelic. Most are numeric ones. At the moment, we can 
exploit data from 2 devices. The first one, Anemon, monitors 
heart problems through some fractal analysis. Its data are the 
heart rate, and a computed index reflecting the patient pain 
level. 

The second instrument is Aspect 2000. It receives electro-
encephalogram signals (EEG) and it uses a bi-spectral analysis 
to compute an anaesthesia index. Generally, this index is 
reliable, but it is somewhat experimental and there is no proof 
it is really related to the patient consciousness level. Data 
provided by this device are the BIS index, the electro-
myogram (EMG), and the suppression ratio (The percentage of 
flat EEG epochs in the computing window). 

The objective is to compute two indices: The consciousness 
level and the pain level of the patient. These two levels are 
correlated since pain tends to wake up the patient and generate 
muscular reflexes. Muscular activity prevent EEG reading, and 
generates artefacts that disturb the BIS index computation. 
Another problem worth mentioning is that Anemon works 
correctly only if the patient is deeply asleep. Otherwise, 
sympathic and para-sympathic systems interfere with each 
other. When this situation occurs, Anemon index is no longer 
reliable. 

C. Differences between the two problematics 
The very first thing that worsens the situation is the time 

scale. In Diatelic, a given patient inserts one set of data every 
day. On the other hand, in the anaesthesia monitoring, each 
device sends data once every 5 seconds. Normally, all devices 
should be synchronized; In fact, there is always a small offset 
that induces some delay between packets of data from different 
devices. Since the period between two packets' arrival is much 
shorter, the system should be less driven by observations. The 
state at the previous time step has much more influence on the 
current belief-state. 

Another main difference between Diatelic and anaesthesia is 

the patient knowledge. In the former, the same patient is 
followed by the system during whole years. This allows for a 
fine adaptation of the model for each patient. In the monitoring 
of anaesthesia, the patient typically has no known profile. 
Perhaps this is its first surgical operation, or perhaps the 
previous one was handled the standard way, without the 
computer being connected to medical devices. All of the 
adaptation must be made in real time, during the anaesthesia 
itself. This limits seriously the computing power available for 
learning the model. The primary goal is to achieve safe 
anaesthesia; the problem of having a good model is secondary. 

Moreover, the anaesthetist has less time for teaching the 
system. Correcting the diagnosis given by the computer in less 
than 5 seconds, while monitoring other devices and listening to 
the surgeon is not realistic. Additionally, each modification of 
drug injection has to be written down for administrative 
purpose. 

Nevertheless, an anaesthetist normally monitors only one 
operation at a time. This implies that he is always present and 
conscious of the anaesthesia’s condition. In Diatelic, one 
single doctor may monitor several patients at the same time. 
This prevents him from being aware of slight modification of a 
given patient medical parameters. 

D. Model adaptations 
The sensor part of the model is rather correct. The only 

modifications consist in the number and type of sensors. The 
acquisition mode of these data is a bit different because data 
are not entered by the patient anymore … They are received 
through serial ports that must be acquired with the highest 
priority. For safety purposes, it is necessary that this subsystem 
is separated from the computing part of the model, so that an 
over lengthy computation might not prevent data acquisition. 

The system dynamics is handled mainly by the transition 
matrix of the HMM. Since the interval between two packets of 
data is not clearly fixed, it is necessary that this matrix depends 
on the elapsed time since the previous observation. Moreover, 
since some data may not be reliable, the transitions may be 
merged one another. Actually, the reception of an unreliable 
packet of data should not have impact on the diagnosis. For 
example, during the use of an electric scalpel, the 
electromagnetic radiations are such that no measure is possible 
because of artifacts presence. This lowers the signal quality 
index (SQI) given by the Aspect device. The system takes this 
into account to prevent the interpretation of incorrect data. In 
the worse case, the data are totally spoiled and unusable. 
However, this packet is sent anyway by the device. This packet 
should not infer with the diagnosis. More precisely, this 
implies that two subsequent transitions must be equivalent to a 
single one, provided the duration of this one equals the sum of 
two it replaces: 
S( )t+δ1+δ2  = T( )δ1  . T( )δ2  . S( )t  = T( )δ1+δ2  . S( )t  (9) 

By extension, a transition that occurs in no time must be 
conservative. Thus, the resulting transition matrix should be 
the identity matrix. The easiest way of handling such 
constraints is based on powers. Actually, these have plenty of 



 
 

interesting properties. However, the computation of such a 
transition matrix may encounter some troubles. The easiest 
way is to discretize the time scale precisely enough, so that 
integer powers may be used without real loss of precision. 
Another way of handling such a situation is based on fractional 
powers. This allows the sample transition matrix to be 
expressed for somewhat large periods so that it may be 
understood by the medical team. This is much in the way of 
our approach: The doctor must be able to understand each part 
of the diagnosis process. 

The trouble is to compute such a power. We chose to 
decompose this matrix into its eigenvectors. The resulting 
space changing operation is then  
T = Q . D . Q -1 (10) 
with D the diagonal matrix made of the eigenvalues of T. This 
way, expression of the matrix power is reduced to: 
T n = Q . D n . Q –1 (11) 

This transformation requires that the matrix is not singular, 
and also that none of its eigenvalues is negative. Such a case 
would actually result in complex matrices with no more 
medical semantics. 

The learning part of the model requires to be able to 
determine the relative quality of a given diagnosis without the 
anaesthetist help. We saw previously this one had not enough 
time to teach the system. This evaluation must be totally 
objective. This work is in progress. 

IV. CONCLUSION 

We showed in this paper the architecture of the Diatelic 
intelligent system. This structure is easily adaptable to other 
problems related to uncertain system monitoring. Particularly, 
the search for pathological cases, or deviations from a normal 
situation is well addressed by such a system. 

The handling of continuous sensors through fuzzy 
discretization is well adapted to the transposition of some 
expert system rules. These rules keep on being understandable 
by experts, since parameters are relatively straightforward. 

The evolution rules of the system may be simply expressed 
through a Markovian model; particularly if the system is 
subject to many unpredictable influences. Noise influences 
concerning the sensors are inherently included into the model, 
since all is expressed as probabilities of observation. As the 
system evolution is better known, the model structure can be 
upgraded so that it contains this information and so that the 
monitoring quality will be even better. 

Depending on the time scale of the system to look after, 
expert advices may be used to train the model. Alternatively, 
some quality function has to be known to allow such a training 
in real time. 

One problem of interest that can enhance a lot the system 
reliability is taking into account some action that may 
influence the system. Currently, no action is taken into account 
for the computing. In Diatelic, this action could take the form 
of precisions concerning the medical treatment, like anti-
hypertensor pills' quantity and the concentration of each bag of 

physiological serum injected into the peritoneum of the 
patient. Regarding the anaesthesia monitoring, the knowledge 
of the concentration of drugs injected to the patient would 
allow for a better transition matrix, conditioned by the 
anticipated effects such drugs should have. The trouble is that 
most of these actions are continuous; so much care may be 
taken to incorporate them into the model properly. 
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