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Abstract. In this paper, an efficient method 
for diagnosing medical pathologies is 
presented, which is particularly adapted to 
long term monitoring of patients. It results 
from the collaboration between the LORIA 
(Lorrain Research Laboratory of Computer 
Science and its Applications), and the ALTIR 
(Lorrain Association for Renal Failure 
Treatments). An important aspect of our 
approach is that the physician can customize 
each patient’s model. This model is expressed 
in medical terms, simplifying the interaction of 
physicians with the intelligent system. 

The approach will be illustrated with the 
remote monitoring of patients suffering from 
kidney disease. In a two years prospective 
randomized study, 15 patients have been 
monitored by our system, while 15 others were 
monitored the classical way. The two groups’ 
statistics has shown that the system was really 
beneficent to patients’ health. This experiment 
has led to the creation of the DIATELIC 
enterprise, to promote and develop this system. 

Keywords: Probabilistic model based reasoning, human-
computer interaction, telemedicine, remote monitoring 

1 General considerations 
The automated monitoring of a patient is a 
difficult task, because our knowledge of the 
dynamics of patient evolution is limited. The 
remote monitoring is even more difficult, 
because the monitored patient stays in an 
uncontrolled environment. Thus, there exists 
an important noise that spoils data, and alters 
the patient evolution. For example, a simple 
stress strongly influences blood pressure. 

To cope with so much uncertainty, the choice 
of probabilistic models seems obvious [1]: 
their main advantages are their noise tolerance 
and their ability to model ill-known rules of 
evolution. More precisely, the class of partially 
observable Markov models [2] is well adapted 
to the diagnosis aspect of the problem, because 
of their observation process. With these 
models, well-known algorithms are able to 
uncover the hidden state of the model from the 
observations. This is an elegant solution to the 
diagnosis problem, since it only needs a 
statistical description of the pathologies we are 
to search for. 

Even more important, each patient is unique: 
even if they almost follow the same generic 
model [3], there are some important variations 
hindering the diagnosis process. For example, 
orthostatic hypotension is a common effect of 
dehydration; however, this is not true with 
cardiac insufficient patients. For aging people, 
arteries tend to lose their elasticity; thus, 
variations of blood pressure are much different 
of those of young people. 

Finally, the real trouble is that we cannot 
determine the real condition of a given patient, 
with very few exceptions. Even the physician 
may not be sure of his own diagnosis. For 
example, the only certain symptom of hyper 
hydration is oedemas presence. But it is 
already too late: the patient has to go to the 
hospital. This consideration implies that the 
model is very hard to define formally. Even 
measuring the accuracy of the diagnosis is 
rather difficult, since we cannot know what a 
good diagnosis is. 
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All these considerations show clearly that the 
interaction with physicians has to be a central 
point in the system. Currently, the physicians’ 
own diagnosis is our only way to define what a 
meaningful diagnosis is. To have a really 
working collaboration with them, we chose to 
ensure a strict medical semantic in each part of 
the model. 

2 Medical context 

2.1 General dialysis considerations 
The Diatelic project is a real case study of the 
monitoring of patients suffering from chronic 
renal insufficiency. In general, this illness is 
due to kidney diseases which hinder its normal 
functions [3]. 

More precisely, our patients are treated 
through continuous ambulatory peritoneal 
dialysis. This method allows patients to stay at 
home while being dialysed daily; they just 
have to come and see their nephrologist once a 
month. Between visits, the patient is left alone, 
even if nurses may come and help. 

In this situation, troubles are mainly related to 
hydration problems: dehydration generally 
results in comas, while hyperhydration results 
in increased blood pressure, and may even 
produce oedemas. High blood pressure can 
damage the whole organism, and generally 
worsen kidney diseases rapidly. 

The objective of the treatment is then to 
regulate the patient weight, which is closely 
related to his hydration level. To achieve this 
goal, the physicians compute an ideal weight 
value for each patient. Then, the dialysis 
strength is modified to reduce the difference 
between the patient’s weight and his ideal 
weight. The trouble is this ideal weight can 
also evolve, as the patient grows bigger, or if 
he loses weight. 

In order to enhance these patients’ health 
condition, each patient should be monitored on 
a daily basis, rather than once a month. Given 
that each nephrologist often has to monitor 
more than one hundred patients, they cannot 
monitor all of them each day. Therefore, we 
proposed a monitoring architecture [4], in 

order to detect hydration problems, as well as 
ideal weight variations. The model we present 
in this paper is the heart of this system. 

2.2 The Diatelic project 
Each patient sends his medical data through 
the Internet daily. These data mainly include 
the patient weight, his blood pressure, and 
parameters of his dialysis. Blood pressure is 
measured when the patient is lit, and when he 
stands up. The difference between these two 
measures is named orthostatic tension. 

Dialysis parameters include information about 
each one of the four dialysis bags a patient 
uses daily. In particular, the system can use 
bag concentration, its weight, and the time it 
was injected. After the dialysis, each bag is 
weighted, and this measure is added to the 
previous data. 

Once a day, each patient uses an Internet 
connection to transfer those data to a dedicated 
server. There, these data are stored in a 
database, and are compared to the patient 
profile, along with data from previous days. 
When some anomaly is detected, an alert is 
sent to the patient, and to the medical team, 
which will figure out its own diagnosis. 

Obviously, all of the gathered medical signals 
are available to the physicians, along with the 
computed diagnosis during the last months. 
With these data, they can see the patient’s 
evolution, and determine if the system was 
right or if the alert was meaningless. When the 
patient really is endangered, the treatment may 
be adapted to overcome this evolution, or the 
patient might be hospitalized if the standard 
treatment is insufficient. The objective is to 
prevent the worsening of patient health, or at 
least to reduce his recovery duration by 
detecting troubles before they fully develop. 

3 The model 

3.1 Markov models 
All of the Markov models are based on the 
Markov property: the behaviour of a system 
only depends on its current state. These 
models may be declined as three interesting 
forms for diagnosing: Markov chains, hidden 
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Markov models, and partially observable 
Markov decision processes. Since each model 
is built on the previous one, I will introduce 
them from the simpler to the more complex 
one. Later, I will explain how each of these 
elements can be applied to our problem. 

Markov models are based on a finite set of 
states, a finite set of actions, and a function of 
transition. The former describes the evolution 
of the model state, knowing the current action. 

Partially observable Markov models [2] add a 
new dimension to these models by inserting 
the observation process. This new stochastic 
process hides the model state: it simply emits a 
given observation based on the model state. 
The challenge is then to infer the hidden state 
from the observations. 

The last model evolution is the partially 
observable Markov decision processes. They 
contain another function which is used to 
reward the system. Hence, an objective is 
defined, and the system will have to choose 
actions to reach this goal [5]. 

Currently, the latest model is not used yet, 
since we only consider the diagnosis process. 
However, we could add some rewards if the 
system was to choose actions to correct the 
patient state, or simply to get a more accurate 
diagnosis by asking for complementary tests. 

3.2 Medical semantics 
The set of states is probably the most 
important part of the model. In fact, since the 
objective is to diagnose some pathology, the 
states of the model must be related to the 
pathologies we want the system to discover. 
Classical approaches model the patient state 
from gathered data, and then try and translate 
it into an understandable diagnosis. 

We chose to introduce the medical semantics 
directly in the model to enhance collaboration 
with the medical team. Thus, we have defined 
our states from a medical point of view. Next, 
we tried and model each of those states 
through the gathered data [1]. This approach 
enhances the physician's comprehension of the 
system behaviour, and it also simplifies the 
system itself since no interpretation is needed. 

If we consider the problem of long term 
monitoring, there is a particular state that plays 
a crucial role: the “healthy” state. This state is 
the ideal patient condition, where nothing is 
wrong. From this point, we can derive other 
states representing deviations from this healthy 
condition. Thus, those states will include some 
pathology, or some conjunction of pathologies. 

This model of the patient is relatively rough, 
since it only knows caricatural situations of 
static conditions. However, it is generally 
sufficient for diagnosing simple pathologies. 
In more complex situations, we may split some 
state to represent different grades of the health 
level of the patient. For example, we could 
split the healthy state in “healthy” and 
“healthy but stressful”, if this notion was 
important for the diagnosis. This could even be 
necessary to ensure that the model satisfies the 
Markov property. For example, the patient 
evolution may be biased if he is stressful. 

The obvious advantage of this states definition 
is that each state has a very strong medical 
meaning. Thus, physicians can interact with 
the model easily. This helps their cooperation 
when first designing the model from scratch, 
and when adapting it to a given patient. Next, 
it helps them when they want to interpret the 
computed diagnosis. 

The set of actions, combined with the 
associated transition function models all of the 
influences the patient can receive. Each action 
influences the state of the model through a 
transition matrix. This is the simplest way to 
implement a probabilistic function indicating 
how the patient state should evolve from one 
state to another. From the medical point of 
view, this transition function is simply the 
expected evolution of the patient, in response 
to some treatment (the action). For example, 
aspirin should lower the overall temperature of 
the patient. However, in some cases, aspirin is 
not sufficient; this implies that the state of the 
model is not precise enough, or simply that, 
for some unknown reason, the result is not the 
expected one. 

This is why the probabilistic nature of 
transitions is important: it allows for the use of 
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an approximate knowledge of the patient 
dynamics. Moreover, physicians are used to 
work with statistics and those transitions help 
coping with the noise inherent to the normal 
life of the patients. 

The observation function is the second most 
important characteristic of the model: it 
indicates the influence the state of the patient 
has on the values we can observe. It is the core 
of the observation process. For example, when 
a patient suffers from some infection, his 
ganglia swell. Again, this behaviour is the 
standard one; there can be exceptions where a 
patient suffers from infection, and no ganglion 
swells. It may be related to a factor that has 
not been modelled into the states; however, it 
may simply be related to an unknown external 
influence that prevents the swelling. 

For these reasons, the observation function is 
also probabilistic. It indicates the probability 
of each possible observation while the patient 
is in a given state. Different states may have 
similar probability for some observation. This 
is why the model state is said hidden: in 
general, with a given set of observations, no 
one can determine precisely which the real 
state of the patient is. 

In our model, this function is based on fuzzy 
sets [6] that allow the model to use continuous 
observations with relatively few parameters. 
Thanks to this fuzzy notation, each parameter 
has an obvious meaning for the medical team. 
Additionally, this fuzziness allows for a simple 
but expressive way of describing a given state 
[7]. 

Actually, each state is defined separately from 
the others; additionally, we imposed that data 
from different sensors were not directly 
related. For example, weight does not directly 
influence the blood pressure. Instead, we have 
an estimation of the hydration level of the 
patient that influences both the weight and the 
blood pressure. 

This allows for an even simpler collaboration 
of the nephrologists with the system: each 
parameter characterizes only a given state, and 
is only related to a single medical sensor. This 
influence is represented as a graphical curve 

indicating how probable a given value of this 
sensor is, knowing that the patient is in a 
precise state. For example, blood pressure 
should be lower than the normal value when 
the patient is dehydrated; however, in few 
cases, it may be normal. This will show as the 
following graph, which is centred on the 
normal value and expands 1.5 mm Hg each 
way.  

 
Blood pressure when the patient is dehydrated 

Thanks to the strong semantics of states, this 
kind of graph is really easy to interpret. 
Moreover, physicians can interact directly with 
this graph to set the correct influence. 

Finally, all of these sensors are aggregated into 
a single observation probability [8] indicating 
how representative the physiological signals 
are, with respect to each state. 

4 The diagnosis process 
The diagnostic is the art of finding out the 
reasons that explain observed symptoms. With 
our model, and more particularly with the state 
semantics, diagnosing a medical condition is 
equivalent to finding which the hidden state of 
the patient is. 

To uncover the hidden part of the model from 
the observations, the traditional algorithm of 
Viterbi [2] is well adapted. Actually, dynamic 
programming [9] allows for an efficient use of 
the Bayes rule for conditional probabilities to 
obtain a diagnosis process from the declarative 
model.  

Hence, from a given sequence of observations 
starting from a known state, we are able to 
compute the optimal sequence of states the 
patient has visited. More precisely, the 
Forward algorithm gives the exact probability 
of any state at each time step, considering all 
the possible evolutions of the patient. 
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Once these probabilities have been computed, 
the physician can interpret them directly, since 
each state has an obvious medical meaning. 
This information is far more precise than the 
mere state sequence: it shows the confidence 
the system gives to each state. For example, a 
hesitation between two states is clearly visible, 
whereas the Viterbi algorithm would have 
given only the most probable one. 

Alerts are generated from these probabilities in 
two cases: when the most probable state is not 
the "healthy" one, or if the difference between 
the two most probable states is negligible. 
Therefore, alarms are generated if the system 
is not sure of the state of a patient, or when an 
anomaly is detected. Next, the alert is 
displayed on the patient screen to suggest 
contacting his physician. 

At the same time, it is added to the medical 
team's main screen to draw the physician's 
attention to this anomaly. From this page, the 
medical team can see the alerts from all the 
patients; they can also access all of the 
gathered data from the past months, and finally 
adjust the patient's treatment or his profile. 

5 The experiment 
In association with nephrologists from the 
ALTIR (Lorrain Association for Renal Failure 
Treatments), we conducted a prospective 
randomized experiment during 2 years, with 
30 voluntary patients spread across 2 groups. 
The first one (the Test group) is monitored the 
classical way, while the second one (the 
Diatelic group) is monitored with the Diatelic 
system. Each patient was treated by peritoneal 
dialysis for one month at home before his 
integration into the experiment. This way, each 
patient had time to learn the medical procedure 
without biasing the experiment results. 

Gladly, the two groups were statistically 
homogenous. At the very beginning of the 
experiment, all the patients were around 70 
years old, with a Charlson index around 5.4. 
After two years, 12 patients died, and 6 had 
left the experiment for other reasons. There is 
no significant difference between the reasons 
for departing from the two groups. 

The first significant difference between the 2 
groups is related to the number of visits in 
excess from the monthly one. Actually, the test 
group has paid almost 90% more visits per 
patient than the Diatelic group. This gives an 
uncertainty factor of 0.66% (ANOVA test). 
Thus, this diminution is very significant. 

The most important difference, from a medical 
point of view, is that the Diatelic group has a 
far better controlled blood pressure. In fact, 
whereas almost all of the patients were slightly 
in hypertension, patients from the Diatelic 
group have decreased their blood pressure by a 
mean 1.1 mm Hg more than the test group 
(p<3%). In the same time, they slightly 
decreased their pills consumption (p<6%). 

Even more, the average duration of hospital 
treatment is almost halved: whereas a patient 
from the Test group stays for 20 (+/- 36) days 
at the hospital in a year, a patient from the 
Diatelic group only stays for 11 (+/- 14.5) days 
at the hospital in a year. Unfortunately, this 
difference is not statistically significant, 
principally because of the large standard 
deviations of both groups. 

All these facts amount to an average 14,000 
euros annual economy per patient, which 
largely overcome the price of equipping each 
patient with a computer. Unfortunately, the 
costs of continuous ambulatory peritoneal 
dialysis are mainly related to hospital 
treatments. Since these are not significant, 
economies are not significant either. 

Considering all the advantages of the system, 
we decided to patent it [10] and to create an 
enterprise to continue its development. This 
year, the experiment will be extended to 300 
patients to study the system applicability to a 
realistic number of patients. 

6 Method discussion 
We have compared the diagnosis obtained 
with partially observable Markov models with 
other techniques. However, it is difficult to 
quantify exactly the accuracy of a diagnosis. 
Therefore, this comparison was based on the 
physicians' remarks on the diagnosis accuracy 
and on the number of false alerts. 
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The first method we tested was a standard 
expert system [11] based on rules we 
established in collaboration with the ALTIR 
nephrologists. The model was very hard to 
tune because of the several thresholds 
necessary to implement each rule. The worst 
consequence of this system was that its 
diagnosis was too sensitive to input variations. 

To overcome this sensitivity, we upgraded this 
system with fuzzy logic [12]. In particular, the 
sensors' model was exactly the same as the one 
we used in the Markov model. Each sensor 
was based on three fuzzy values depending on 
the signal value being normal, insufficient or 
excessive. Moreover, each rule was given a 
confidence factor based on the importance the 
physicians gave it into their own diagnosis. 

However, even this new system was deceptive. 
In fact, fuzzy logic brought some precision 
into the observation process, which was a great 
enhancement. However, it failed into ensuring 
a temporal stability of the diagnosis. More 
precisely, the diagnosis of the past days had 
disproportionate importance: sometimes the 
diagnosis changed totally from one day to 
another, sometimes it kept the same diagnosis 
even if the input data had changed a lot. The 
trouble is this threshold was very sensitive, 
and different from one patient to another. 

A definite trouble of these two expert systems 
was that the medical state of the patient was 
artificially reported from one day to the next 
one. More than the insertion of several new 
thresholds to tune this influence, this way of 
ensuring some temporal stability complicated 
the rules set beyond what we expected. The 
result was such that no one was able to read 
these rules anymore. 

Finally, the model parameters were spread all 
over the rules code, even if we paid particular 
attention to regroup most of them. The result 
of this was that it was almost impossible to 
personalize the patient profile. 

During the past year, we compared our results 
with those obtained with dynamic Bayesian 
networks [13]. However, even if this model 
seems to give comparable results in laboratory, 
no real case use was attempted. Therefore, we 

cannot say if it is suited to the collaboration 
with physicians yet.  
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