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Abstract-- We detail in this article a diagnosing architecture 

for critical dynamic systems where the interaction with a human 

expert is necessary. We addressed this problem by enforcing 

strong semantics into a Hidden Markov Model so that its results 

and parameters may be interpreted directly by the expert. In this 

situation, adapting the model to the evolution of the modeled 

system is challenging because of the lack of data. We developed a 

specific method which allows the expert to direct the learning 

algorithm by locally correcting the computed diagnosis. Using a 

gradient method for optimizing a compromise between the 

expert's corrections and statistical criteria, the model can be 

adapted efficiently. This architecture has been applied to the 

remote monitoring of dialyzed patients for 3 years with a great 

evaluation by the dialysis center's physicians. 

 
Index Terms-- Adaptative systems, Biomedical signal analysis, 

Gradient methods, Hidden Markov models. 

I. INTRODUCTION 

HE automated monitoring of critical systems is becoming 

more and more necessary as the number of human experts 

becomes insufficient in some domains. This is particularly 

true in the medical monitoring of chronic diseases, where 

patients live longer and diseases are diagnosed earlier. This 

increase in healthcare demand does not match with the actual 

number of physicians. 

In such a situation, the automated monitoring can be very 

useful, monitoring several patients simultaneously while 

drawing the physicians' attention to the patients who need 

some treatment. However, this is not limited to medical 

applications, and several domains can benefit from this 

approach. Therefore, we will consider in this paper a generic 

dynamic system (the system in the following). 

Such problems have been considered in the past, aiming at 

the proper detection of specific conditions in a controlled 

environment like Intensive Care Units [1]. Several models 

have been designed to translate the experts' knowledge into a 

rule-based expert system [2] or to match specific patterns in 

the clinical data [3]. 
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However, the first approach is rather limited due to the 

increasing number of rules necessary for implementing such 

knowledge, and because of the poor results obtained in noisy 

environments. The second approach focuses on the data, 

modeling them very precisely and handling the noise properly. 

However, this kind of model usually requires very complex 

models which can only be understood by their makers. 

We chose an alternative approach, focusing on the data 

with an expert point of view. By implementing a stochastic 

model anchored in the expert's domain, we were able to obtain 

a diagnosis architecture which is able to deal with noise and 

uncertainty while allowing the expert to intuitively understand 

the reason for each parameter. 

However, regarding the long term monitoring of specific 

systems, the adaptation of the model must be considered. This 

is particularly true with medicine, where patients evolve when 

they age, and where pathologies evolve with time. In such 

conditions, where the model must be adapted quickly, we 

require the algorithm for learning new parameters from few 

data while conserving the semantics of the model. 

Unsupervised learning cannot be applied to such situations 

because of the lack of a proper learning corpus and the 

necessity for keeping the model semantics. Supervised 

learning is usually difficult to use, requiring the expert to 

provide lots and lots of information. Therefore, we designed a 

semi-supervised learning method that uses partial directives 

from the expert and statistical criteria for adapting the model 

parameters. The expert's indications allow for the semantics to 

be kept during the process, while the numerical criteria allow 

for reaching a durable model. Additionally, the synergy of 

these two aspects makes the architecture tolerant with respect 

to mistakes from the expert. 

In a first part, we will describe the expert-compatible 

stochastic model. Next, we will detail the learning algorithm. 

Finally, results from the clinical study of the automatic 

monitoring of dialyzed patients will be presented, illustrating 

the successful collaboration of the computer with physicians. 

II. A FUZZY MARKOV MODEL 

A. Hidden Markov models 

We chose hidden Markov models (HMM) for modeling the 

dynamic system because they are able to deal with noise and 

uncertainty very efficiently. Moreover, their discrete versions 

have been studied for several years, and very efficient 

algorithms are available. 
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As opposed to their classical use in speech recognition, for 

example, we chose to use a single Markov model for modeling 

the whole system. This allows us for designing an efficient 

model which is able to deal with the dynamics of all the 

possible diagnoses, but also with the dynamics of the 

evolution from one condition to another. Additionally, it 

allows for the easy diagnosis of hybrid conditions. 

To allow the expert for understanding the model, we based 

its states on the situations to diagnose. Since we consider long 

term monitoring situations for detecting anomalies, there 

exists a central condition where everything is right. This will 

be the Normal state. From this point, possible anomalies are 

modeled by one or more additional states, depending on 

possible evolutions.  

Therefore, the probability indicated by the model for a state 

can be interpreted directly as the probability of some anomaly 

to occur. Similarly, the probability for evolving from one state 

to another can be interpreted as the evolution from one 

anomaly to another. 

B. Fuzzy observations 

Each state of a HMM must be associated with an effect on 

the observation of the system. This is direct knowledge, which 

is very easy to obtain, compared with a diagnosis procedure. 

Information like "infections generally imply fever" can be 

translated as a strong probability for observing fever in the 

state infection. 

However, most of the observations are continuous in almost 

all the real situations. The trouble is that these continuous 

signals must be mapped to some probability for each state. 

The 2 common approaches are not really well suited to our 

situation: using discrete intervals to model a continuous signal 

implies some threshold effect when the observed value is near 

the boundary of 2 intervals. To avoid generating too much 

noise while discretizing the signal, the intervals must be small 

enough for the model to be able to cope with this threshold 

effect. However, this implies generating an observation 

probability for each interval of each state. Therefore, the 

number of parameters quickly grows out of control, and the 

influence of one parameter on the final diagnosis is not 

obvious anymore. 

The second approach consists of using a weighted sum of 

normal probability distributions, which allows for generating 

any bounded continuous function. However, even if this 

solves the above threshold effect, the number of parameters 

necessary for generating each probability function is really 

big: Each normal density function requires two parameters (its 

mean and its variance) for modeling a single "bump", even if 

the signals are supposed independent. Generating other kinds 

of functions requires adding several of them. Finally, the exact 

influence of a specific parameter on the final diagnosis is 

almost impossible to describe easily. 

This is why we chose to express our model's observation 

probabilities through fuzzy intervals, as recommended in [4]. 

Since we are bound to diagnosing anomalies, most of the 

signals have a set of values that should be observed normally.  

Therefore, we defined three fuzzy values representing the 

signal being weak, normal, or strong. The fuzzy nature of 

these sets rubs out the threshold effect, because we do not 

observe one symbol at a time. Instead, the model receive a 

confidence form each signal for being weak, normal or strong. 

Finally, the semantics of a given signal being strong in a given 

state is obvious. These parameters can be interpreted with no 

difficulty. 

Depending on the signals' configuration with respect to a 

specific problem, the probability of observing a given signal 

may be considered as independent from the other signals or 

not. In the first situation, as shown in [5], we can merge all the 

confidences through the formula 

P( )Ot| d  = ∏
vsi ∈ signals

 ∑
σ ∈V( )vsi

 P( )vsi,t= σ  P( )vsi= σ | d  (1) 

where the influence of diagnosis d on the observation O 

measured at time t depends on each signal vs, which is seen as 

a fuzzy set of symbols V(vs). 

When the signals are not independent, we have to consider 

a covariance matrix, which expresses the probability for 

observing joint signals. This makes the parameters set grow 

dramatically and we suggest avoiding this situation. An 

alternative method would be to generate several states, 

expressing the various signals dependencies. For example, if 

two signals must be similar for a given diagnosis, we can 

generate three states, both signals being respectively weak, 

normal, or strong. 

Fig. 1 shows the observation of the Diatelic [6] system. In 

this case, the computer has to monitor a population of home 

dialyzed patients who send their medical signals through 

Internet daily. The model has to detect hydration and ideal 

weight evolutions, so that physicians may be alerted early 

enough to avoid hospitalization. The HMM is based on 5 

states and 4 signals modeled through 3 fuzzy values each. Fig. 

1 shows that interpreting the probabilities is straightforward: 

each curve plots the probability for observing the row's signal 

in the column state. 

 
Fig. 1.  Graphical representation of the DIATELIC observation function; each 

column is associated with a specific state/diagnosis while each row regards a 

medical signal. Plots are the sum of 3 components (weak, normal, and strong) 

weighted by the probability for observing each symbol in each state. The 

higher the plot, the more probable the observation is, in the associated state. 
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III. ADAPTING THE MODEL 

A. Learning conditions 

Considering the continuous monitoring of a critical system, 

the adaptation period should be as short as possible. It is 

therefore impossible to gather sufficient data for building a 

state-of-the-art corpus. This means that the model will be 

learnt from a small corpus, which is certainly biased. 

When the model is to ensure that the monitored system is 

safe all the time, in particular, recently gathered data will 

concern mainly the normal state. It is clearly improbable that 

all the possible diagnoses occur in a short period of time. 

Therefore, Expectation-Maximization algorithms [7] like 

Baum & Welch are not applicable. They would overfit the 

data and spoil the model semantics. 

To prevent the model semantics from drifting, we chose to 

optimize the parameters with respect to the computed 

diagnosis rather than the observation probability. The trouble 

is that the real state of the system is unknown. Therefore we 

have to rely on the Expert's diagnosis to bias the process: the 

algorithm has to learn from the Expert’s directives. 

To simplify the operator's task, the computer first displays 

its current diagnosis. Since this diagnosis was relatively good 

until recently, the correct diagnosis is expected to be relatively 

close from it. From there, one can move probability curves to 

their correct position, providing the algorithm with directions. 

From a computer's point of view, the corrected diagnosis is 

nothing more than an array ct (d) specifying the probability the 

state d should have at time t. Therefore, the main objective 

should be to minimize the differences between the computed 

diagnosis and the corrected one. 

B. Algorithm choice 

When the corrected diagnosis is known, adapting the model 

parameters simply reduces to a minimization problem. Thus, a 

simple gradient descent algorithm has been chosen to 

minimize the error function (2). 

 

∑
d ∈ states

∑
t=1

T

( )bt (d)−ct (d) 2 (2) 

 

with bt(d) being the computed probability the diagnosis d has 

at time t. Obviously, the array bt(s) is computed by the 

Forward procedure [8] whose core formula of this procedure 

is 

 

bt (s) = ∑
s′∈ States

bt−1(s’).P( )Qt =s | Qt−1=s′ .P( )Ot | Qt=s  (3) 

 

with Ot the observation and Qt the real state at time t. 

Obviously, these equations are differentiable, but computing 

all their derivatives is clearly a long task since (3) is recursive. 

For this reason, a derivative-free method has been chosen for 

optimizing it. More precisely, we implemented a bracketing 

minimization, along with a relaxation method based on [9]. 

In the remaining of this section, the bracketing search in 

one-dimension and the relaxation we propose will be 

explained before considering some possible generalizations. 

C. Bracketing minimization 

The main idea for Bracketing Optimization in one 

dimension is to progressively reduce the search interval 

around the optimum. Therefore, it is necessary to obtain first 

an interval containing the minimum. Since all the parameters 

are probabilities, this is trivial. 

The real problem is to reduce this interval while keeping the 

minimum in it. To achieve this goal, we need a third point 

between the terminals. There are two main situations 

depending on this new point being better than the others or 

not. When the best point is one of the interval terminals, the 

problem is easy. Supposing the function is smooth enough, its 

minimum will be between the best point and the middle one: 

the search interval is halved. 

When the middle point is the best one, the problem is 

harder: two more points are needed to figure out on which 

side the minimum is. Having five points, the best one has two 

neighbors since no terminal is the best (this was the above 

situation). Supposing the function is smooth enough, the 

minimum should be somewhere between these two neighbors. 

This algorithm is simple but efficient. It has almost no 

condition on the error function (it must be continuous), and is 

easy to implement. However, there is no guaranty it will find 

the global optimum, like all the local algorithms. Overcoming 

this limitation will be considered in the last subsection. 

D. Relaxation to multidimensional functions 

The principle of relaxation methods is that an optimal point 

in a multidimensional space has to be optimal in any possible 

projection of it. Therefore, the optimal point is not reached as 

long as there are non-optimal projections. 

The naive relaxation consists in considering each dimension 

in turn: all the parameters but one are fixed to their current 

value. When all the parameters have been optimized once, it is 

necessary to consider them again: actually, each parameter is 

optimized with respect to a given configuration of the other 

parameters. Later, these parameters are optimized, their values 

change, and previously optimized parameter may no longer be 

optimal. These cycles only stop when no significant 

enhancement is achieved for any parameter. Then, all these 

projections are locally optimal: the objective is reached. 

This method works very well; however, it is generally 

inefficient due to a stairs-like behavior [9]: each step slightly 

moves the optimum point in some direction, affecting the 

others' optima. Since this decreases as cycles accumulate 

(because each step gradually enhances the solution), the 

algorithm eventually converges. Such a situation is 

represented on Fig. 2. 

To overcome this behavior, Powell proposed replacing one 

of the parameters by a combination of the previous cycle's 
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optimization. This allows for short-cutting efficiently those 

stairs but it also has some drawbacks. First, since one 

parameter is replaced by some combination at the end of each 

optimization cycle, there exists a risk that this new vector is 

almost collinear with another one. When this occurs, one of 

the problem dimensions disappears, and a whole family of 

potential solutions is lost. The second drawback is related to 

constrained parameters. Since a new parameter is generated, 

its constraints must be defined. This is why Powell has 

considered only unconstrained variables. 

 

Fig. 2.  Illustration of the stairs-like gradient descent: the process is clearly 

inefficient. Left: 2D view with the optimization superimposed. Right: 3D view 

of the same function. 

 

To solve the first problem, [10] proposed to reset the 

optimization vectors after a while. We chose an alternative 

solution: a new temporary parameter is created instead of 

replacing one. This way, the optimization can be done along 

this vector, but there is no possibility of losing solutions. Its 

drawback is that these optimized directions cannot be 

combined into a better one on later cycles. Therefore, it may 

converge slower than Powell's method. 

The second enhancement is related to constrained 

parameters. Considering our diagnosis model, which is 

stochastic, we focused on probabilistic parameters. Obviously, 

each parameter is limited to legal probabilities, but the real 

concern is that probability distributions (like the Markov state 

transitions, for example) add shared constraints: all the related 

probabilities must sum to 100 %. 

This is a perfectly defined linear problem. There is a unique 

solution and, if one parameter is defined by the others, the 

solution space becomes convex. The constraints generated by 

the n parameters Pi of a given distribution are shown in 

equation (4). 

 

  
 

During the extra optimization step, we will define a 

parameter λ that will influence the others depending on the 

previous cycle’s optimization offsets ∆Pi: 
 

Pi
 *
 = Pi + λ . ∆Pi ∀i ∈ [1..n] (5) 

 

Resolving the resulting system requires two temporary 

values ζ and η, summarizing respectively the global influence 

of the cycle’s modifications and the current parameter 

configuration. The final constraints are shown in (6): 

  
 

Finally, merging these constraints for all the parameters of 

all the distributions produces the validity interval for the new 

parameter λ. Within these bounds, the implied parameters are 

within their validity interval (by construction of λ's bounds), 

and all the probability distributions constraints are satisfied. 

Considering the bracketing algorithm, these bounds are 

automatically enforced; there is no need for checking the 

validity of any parameter at any time. 

The proof and all the solving of (6) are available in [11]. 

IV. EXPERIMENTAL RESULTS 

This diagnosing architecture has been experimented in 

various situations, ranging from locating mobile robots to 

anesthesia monitoring. The most advanced experiment was 

Diatelic [6], because all parts of it have been stressed during a 

3 years prospective clinical study managed by physicians from 

the ALTIR. Therefore, we will focus on this particular 

experiment. 

The fuzzy observation function has been presented in 

section II (see Fig. 1), along with the model's states. The 

transition has been defined for 2 actions: observe and forget. 

The first action is used when the patient is at home. It 

implements mainly the persistence of the health level: We 

assume that a patient evolves slowly. A state of dehydration 

cannot evolve into a hyperhydration in one day. 

The forget action is used when the patient comes at the 

hospital or when a physician changes the patient's profile. In 

these conditions, the expected evolution is brutal. The model 

should forget any previous situation. 

The experiment included 30 patients, half of them being 

monitored by our system while the others were monitored the 

standard way. The two groups are statistically comparable. 

Significance is evaluated through a standard ANOVA 

(analysis of variance) statistical test. 

Table I shows the compared characteristics of both groups. 

These characteristics show no significant variation. More than 

these numerical values, medical causes for the renal 

insufficiency and residual kidney functions are also 

statistically comparable across the two groups. Therefore, the 

obtained results are really meaningful. 

 

 

 

 

(6) 

 

(4) 
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TABLE  I. 

GROUP CHARACTERISTICS. 

Group Diatelic Reference 

Sex (Men / Women) 8 / 7 9 / 6 

Average age 

(standard deviation) 

69.8 (±14.8) 70.7 (±12.4) 

Diabetic patients 5 4 

Comorbidy  

(Charlson Index a) 

5.7 4.8 

Distance from the center  

(in km) 

52 52.5 

a The Charlson Index is an evaluation of the illness severity based on the 

age and pathologies, ranked with respect to their mortality. 

 

Two interesting facts have been revealed by this experiment 

after 3 years: The number of spontaneous visits and the 

average blood pressure of patients monitored by Diatelic show 

a significant drop, compared to the other patients. 

Whichever their group, each patient comes and visit their 

nephrologists once a month. This period can be adapted by the 

physician, so that ill patients come more often than healthy 

ones. However, any patient may consult at the hospital if 

something goes wrong. 

Table II shows the same results, but classified group per 

group. Moreover, the total number of days spent per year at 

the hospital has been added. These statistics clearly show that 

patients monitored by Diatelic consult less than the others. In 

particular, an ANOVA test shows (P<0.0066) that the number 

of spontaneous visits is significantly lower for the patients 

who are monitored by our system. The number of expected 

visits is almost the same, while the number of hospitalizations 

seems to decrease. However, the high standard deviations of 

both groups prevent us from gaining significant conclusions. 
TABLE  II. 

YEARLY MEDICAL INTERVENTIONS FOR DIALYZED PATIENTS. 

medical actions per year Diatelic Reference 

Programmed visits 10.6±2.3 11.0±2.3 
Spontaneous visits 2.8±2.1 5.3±2.7 
Days at the hospital 11±14.5 20.5±36.1 

 

The second point of interest is the decrease of blood 

pressure of Diatelic-monitored patients. As shown on the 

Table III, while classical patients keep their blood pressure 

constant, patients monitored by our module decrease theirs. 

Since all patients where in a slight hyperhydration state before 

the experiment, this is really beneficent. An ANOVA test 

confirms this, with P<0.03. During the experiment, the drugs 

consumption of the patients shows a similar evolution, but the 

ANOVA reports only a P<0.061; therefore, this is not a 

significant result for physicians (the threshold is P<0.05). 

The patients' weight has a similar behavior: whereas the 

Diatelic patients suffer from no significant weight increase, 

the others show a dramatic augmentation: Wilcoxon's test 

shows a significant tendency with P<0.026. 

 

TABLE  III.  

GLOBAL EVOLUTION OF MEDICAL SIGNALS OVER A TWO YEAR PERIOD.  

Variations of Diatelic Reference 

Weight 

(Kg) 

+0.413 (±4.3) +2.631 (±3.9) 

Blood Pressure 

(mm Hg) 

-1.177  (±1.133) -0.023  (±1.582) 

Drugs 

(kinds) 
-0.2 (±0.561) +0.333 (±0.9) 

 

Finally, evaluating the learning algorithm is quite difficult. 

First, the real condition of the patients is, in general, unknown 

for everyone. Even more, since we have very little data for 

training the model, and because they are temporally 

organized, it is not possible to train the algorithm of part of 

the data, while estimating its robustness on the remainder. 

Therefore, we relied totally on the physicians' own diagnosis 

to judge the system results. 

Their evaluation is very positive. From their opinion, a 

model which has been trained properly can monitor a patient 

for several weeks, without requiring anymore tuning. 

Regarding a particular situation, a patient has been 

hospitalized because of some hyperhydration, whereas the 

model indicated he was all right. By correcting the diagnosis 

and having the model learnt from it, we observed that the 

adapted model looked like the standard model for cardiac 

insufficient patients. The physician peeked into the patient's 

record and saw this patient previously had a heart 

insufficiency. However, a recovery had been diagnosed a few 

weeks before, and the model had been adapted accordingly.  

Therefore, this anecdote clearly shows that the learning 

algorithm was able to identify the real sources of the anomaly. 

V. CONCLUSION 

The diagnosing architecture we show in this paper allow for 

expressing the model itself in a human-understandable form. 

This is particularly valuable when the software is to interact 

with human specialists like physicians, because they are able 

to understand the semantics of each part of the model. For 

example, any parameter has a precise meaning, and its 

modification has the expected effects on the computation. 

However, even if we care for minimizing the number of 

parameters, a given model may gather tens of them. Thus, 

setting all of them manually can be really laborious and prone 

to errors. To address this situation, we describe a learning 

algorithm that uses directions from the human expert to adapt 

the model while keeping its semantics intact. 

Because of the low constraints on the value function the 

algorithm optimizes, a compromise between the expert's 

desires and statistical criteria can be reached. This guarantees 

a stable diagnosis, and allows the expert for focusing on the 

most important mistakes solely. 

Further enhancements of this architecture may include a 

finer model. More precisely, the discrete nature of the state 

space can be responsible for some strange diagnosis behaviors 

sometimes. 
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Therefore, evolving toward a continuous model could be 

very useful. However, expressing such a model so that the 

expert could identify its semantics may be quite difficult. 
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